
Quick Summary

1. There are Lots of Ways to Run Software Projects

There are lots of ways to look at a project in-flight. For example, metrics such
as “number of open tickets”, “story points”, “code coverage” or “release
cadence” give us a numerical feel for how things are going and what needs
to happen next. We also judge the health of projects by the practices used on
them, such as Continuous Integration, Unit Testing or Pair Programming.

Software methodologies, then, are collections of tools and practices: “Agile”,
“Waterfall”, “Lean” or “Phased Delivery” all prescribe different approaches
to running a project, and are opinionated about the way they think projects
should be done and the tools that should be used.

None of these is necessarily more “right” than another: they are suitable on
different projects at different times.

A key question then is: how do we select the right tools for the job?

2. We Can Look at Projects in Terms of Risks

One way to examine the project in-flight is by looking at the risks it faces.

Commonly, tools such as RAID logs1 and RAG status2 reporting are used.
These techniques should be familiar to project managers and developers
everywhere.

However, the Risk-First view is that we can go much further: that each item
of work being done on the project is to manage a particular risk. Risk isn’t
something that just appears in a report, it actually drives everything we do.

For example:

1https://www.projectmanager.com/blog/raid-log-use-one
2https://pmtips.net/blog-new/what-does-rag-status-mean

i

https://www.projectmanager.com/blog/raid-log-use-one
https://pmtips.net/blog-new/what-does-rag-status-mean


• A story about improving the user login screen can be seen as reducing
the risk of users not signing up.

• A task about improving the health indicators could be seen as mitigat-
ing the risk of the application failing and no-one reacting to it.

• Even a task as basic as implementing a new function in the application
is mitigating the risk that users are dissatisfied and go elsewhere.

One assertion of Risk-First is that every action you take on a project is to
manage a risk.

3. We Can Break Down Risks on a Project Methodically

Although risk is usually complicated andmessy, other industries have found
value in breaking down the types of risks that affect them and addressing
them individually.

For example:

• In manufacturing, tolerances allow for calculating the likelihood of de-
fects in production.

• In finance, projects and teams are structured around monitoring risks
like credit risk, market risk and liquidity risk.

• Insurance is founded on identifying particular risks and providing fi-
nancial safety-nets for when they occur, such as death, injury, accident
and so on.

Software risks are difficult to quantify, and mostly, the effort involved in
doing so exactly would outweigh the benefit. Nevertheless, there is value in
spending time building classifications of risk for software. That’swhat Risk-First
does: it describes a set of risk patternswe see every day on software projects.

With this in place, we can:

• Talk about the types of risks we face on our projects, using an appro-
priate language.

• Anticipate Hidden Risks that we hadn’t considered before.
• Weigh the risks against each other, and decide which order to tackle

them.

ii



4. We Can Analyse Tools and Techniques in Terms of
how they Manage Risk

If we accept the assertion that all the actions we take on a project are about
mitigating risks, then it stands to reason that the tools and techniques avail-
able to us on a project are there for mitigating different types of risks.

For example:

• If we do a Code Review, we are partly trying to minimise the risks
of bugs slipping through into production, and also manage the Key
Person Risk of knowledge not being widely-enough shared.

• If we write Unit Tests, we’re addressing the risk of bugs going to pro-
duction, but we’re also mitigating against the risk of regression, and
future changes breaking our existing functionality.

• If we enter into a contract with a supplier, we are mitigating the risk
of the supplier vanishing and leaving us exposed. With the contract in
place, we have legal recourse against this risk.

From the above examples, it’s clear that different tools are appropriate for
managing different types of risks.

5. Different Methodologies are for Different Risk
Profiles

In the same way that our tools and techniques are appropriate for dealing
with different risks, the same is true of the methodologies we use on our
projects. We can use a Risk-First approach to examine the different method-
ologies, and see which risks they address.

For example:

• Agile methodologies prioritise the risk that requirements capture is
complicated, error-prone and that requirements change easily.

• Waterfall takes the view that development effort is an expensive risk,
and that we should build plans up-front to avoid re-work.

• Lean takes the view that risk lies in incomplete work and wasted work,
and aims to minimise that.

Although many developers have a methodology-of-choice, the argument
here is that there are trade-offs with all of these choices.

iii



Figure 1: Methodologies, Risks, Practices

“Methodologies are like bicycles, rather than religions. Rather
than simply believing, we can take them apart and see how they
work. ”

6. We can Drive Development With a Risk-First
Perspective

We have described a model of risk within software projects, looking some-
thing like this:

How do we take this further?

One idea explored is the Risk Landscape: although the software team can’t
remove risk from their project, they can take actions thatmove them to a place
in the Risk Landscapewhere the risks on the project aremore favourable than
where they started.

From there, we examine basic risk archetypes you will encounter on the
software project, to build up a vocabulary of Software Risk, and look at
which specific tools you can use to mitigate each kind of risk.

Then, we look at software practices, and how they manage various risks.
Beyond this we examine the question: how can a Risk-First approach inform the
use of this practice?

For example:

• If we are introducing a Sign-Off in our process, we have to balance
the risks itmitigates (coordination of effort, quality control, information
sharing) with the risks it introduces (delays and process bottlenecks).

• If we build inRedundancy, this mitigates the risk of a single point of fail-
ure, but introduces risks around synchronizing data and communication
between the systems.

iv



• If we introduce Process, this may make it easier to coordinate as a team
and measure performance but may lead to bureaucracy, focusing on the
wrong goals or over-rigid interfaces to those processes.

Risk-First aims to provide a framework in which we can analyse these actions
and weigh up accepting versus mitigating risks.

Still interested? Then dive into reading the introduction.

v





Part I

Introduction

1





CHAPTER 1

A Simple Scenario

In this chapter, I’m going to introduce some terms for thinking about risk.

For a moment forget about software completely, and think about any en-
deavour at all in life. It could be passing a test, mowing the lawn or going
on holiday. Choose something now. I’ll discuss from the point of view of
“cooking a meal for some friends”, but you can play along with your own
example.

1.1 Goal In Mind

Now, in this endeavour, we want to be successful. That is to say, we have a
Goal InMind: we want our friends to go home satisfied after a decent meal,
and not to feel hungry. As a bonus, wemight also want to spend time talking
with them before and during the meal. So, now to achieve our Goal In Mind
we probably have to do some tasks.

Since our goal only exists in our head, we can say it is part of our Internal
Model of theworld. That is, themodelwe have of reality. Thismodel extends
to predicting what will happen.

If we do nothing, our friends will turn up and maybe there’s nothing in the
house for them to eat. Or maybe, the thing that you’re going to cook is
going to take hours and they’ll have to sit around and wait for you to cook it
and they’ll leave before it’s ready. Maybe you’ll be some ingredients short,
or maybe you’re not confident of the steps to prepare the meal and you’re
worried about messing it all up.

3



Figure 1.1: Goal In Mind, with the risks you know about

1.2 Attendant Risk

These nagging doubts that are going through your head are what I’ll call the
Attendant Risks: they’re the ones that will occur to you as you start to think
about what will happen.

When we go about preparing for this wonderful evening, we can choose to
deal with these risks: shop for the ingredients in advance, prepare parts of
the meal andmaybe practice the cooking in advance. Or, we can wing it, and
sometimes we’ll get lucky.

How much effort we expend on these Attendant Risks depends on how big
we think they are. For example, if you know there’s a 24-hour shop, you’ll
probably not worry too much about getting the ingredients well in advance
(although, the shop could still be closed).

1.3 Hidden Risks

Attendant Risks are risks you are aware of. You may not be able to exactly
quantify them, but you know they exist. But there are alsoHidden Risks that
you don’t know about: if you’re poaching eggs for dinner, perhaps you didn’t
know that fresh eggs poach best. Donald Rumsfeld famously called these
kinds of risks “Unknown Unknowns”:

“Reports that say that something hasn’t happened are always
interesting to me, because as we know, there are known knowns;
there are things we know we know. We also know there are
known unknowns; that is to say we know there are some things
we do not know. But there are also unknown unknowns—the
ones we don’t knowwe don’t know. And if one looks throughout

4



Figure 1.2: Goal In Mind, the risks you know about and the ones you don’t

the history of our country and other free countries, it is the latter
category that tend to be the difficult ones.”

—Donald Rumsfeld, Wikipedia1

Different people evaluate risks differently, and they’ll also know about dif-
ferent risks. What is an Attendant Risk for one person is a Hidden Risk for
another.

Which risks we know about depends on our knowledge and experience,
then. And that varies from person to person (or team to team).

1.4 Meeting Reality

As the dinner party gets closer, we make our preparations, and the inade-
quacies of the Internal Model become apparent. We learn what we didn’t
know and the Hidden Risks reveal themselves. Other things we were wor-
ried about don’t materialise. Things we thought would be minor risks turn
out to be greater.

Our model is forced to Meet Reality, and the model changes, forcing us to
dealwith these risks, as shown in Figure 1.3. Wheneverwe try to do something
about a risk, it is called TakingAction. TakingAction changes reality, andwith
it your Internal Model of the risks you’re facing. That’s because it’s only by

1https://en.wikipedia.org/wiki/There_are_known_knowns

5

https://en.wikipedia.org/wiki/There_are_known_knowns


Figure 1.3: How Taking Action affects Reality, and also changes your Internal
Model

interacting with the world that we add knowledge to our Internal Model
about what works and what doesn’t. Even something as passive as checking
the shop opening times is an action, and it improves on our Internal Model of
the world.

If we had a good Internal Model, and took the right actions, we should see
positive outcomes. If we failed to manage the risks, or took inappropriate
actions, we’ll probably see negative outcomes.

1.5 On To Software

Here, we’ve introduced some new terms that we’re going to use a lot: Meet
Reality, Attendant Risk, Hidden Risk, Internal Model, Taking Action and
Goal In Mind. And, we’ve applied them in a simple scenario.

But Risk-First is about understanding risk in software development, so let’s
examine the scenario of a new software project, and expand on the simple
model being outlined above: instead of a single person, we are likely to have
a team, and our model will not just exist in our heads, but in the code we
write.

On to Development Process. . .

6



CHAPTER 2

Development Process

In theprevious chapterwe introduced some terms for talking about risk (such
as Attendant Risk, Hidden Risk and Internal Model) via a simple scenario.

Now, let’s look at the everyday process of developing a new feature on a
software project, and see how our risk model informs it.

2.1 A Toy Process

Let’s ignore for now the specifics of what methodology is being used - we’ll
come to that later. Let’s say your team have settled for a process something
like the following:

1. Specification: a new feature is requested somehow, and a business
analyst works to specify it.

2. Code And Unit Test: a developer writes some code, and some unit
tests.

3. Integration: they integrate their code into the code base.
4. UAT: they put the code into aUserAcceptance Test (UAT) environment,

and user(s) test it.
5. . . . All being well, the code is Released to Production.

Can’t We Improve This?

Is this a good process? Probably, it’s not that great: you could add code
review, a pilot phase, integration testing, whatever.

Also, themethodology being usedmight beWaterfall, it might be Agile. We’re
not going to commit to specifics at this stage.

7



Figure 2.1: A Simple Development Process

For now though, let’s just assume that it works for this project and everyone is
reasonably happy with it.

We’re just doing some analysis of what process gives us.

Minimising Risks - Overview

I am going to argue that this entire process is informed by software risk:

1. We have a business analystwho talks to users and fleshes out the details
of the feature properly. This is to minimize the risk of building the
wrong thing.

2. We write unit tests to minimize the risk that our code isn’t doing what
we expected, and that it matches the specifications.

3. We integrate our code to minimize the risk that it’s inconsistent with the
other, existing code on the project.

4. We have acceptance testing and quality gates generally to minimize the
risk of breaking production, somehow.

AMuch Simpler Process

We could skip all those steps above and just do this:

1. Developer gets wind of new idea from user, logs onto production and
changes some code directly.

We can all see this might end in disaster, but why?

Two reasons:

1. You’re Meeting Reality all-in-one-go: all of these risks materialize at
the same time, and you have to deal with them all at once.

8



Figure 2.2: A Dangerous Development Process

2. Because of this, at the point you put code into the hands of your users,
your InternalModel is at its least-developed. All theHidden Risks now
need to be dealt with at the same time, in production.

2.2 Applying the Process

Let’s look at how our process should act to prevent these risks materializing
by considering an unhappy path, one where at the outset, we have lots of
Hidden Risks. Let’s say a particularly vocal user rings up someone in the
office and asks for new Feature X to be added to the software. It’s logged as
a new feature request, but:

• Unfortunately, this feature once programmed will break an existing
Feature Y.

• Implementing the feature will use some api in a library, which contains
bugs and have to be coded around.

• It’s going to get misunderstood by the developer too, who is new on
the project and doesn’t understand how the software is used.

• Actually, this functionality is mainly served by Feature Z. . .
• which is already there but hard to find.

Figure 2.3 shows how this plays out.

This is a slightly contrived example, as you’ll see. But let’s follow our feature
through the process and see how it meets reality slowly, and the Hidden
Risks are discovered:

Specification

The first stage of the journey for the feature is that it meets the Business
Analyst (BA). The purpose of the BA is to examine new goals for the project

9



Figure 2.3: Development Process - Exposing Hidden Risks

and try to integrate them with reality as they understand it. A good BA might
take a feature request and vet it against his Internal Model, saying something
like:

• “This feature doesn’t belong on the User screen, it belongs on the New
Account screen”

• “90% of this functionality is already present in the Document Merge
Process”

• “We need a control on the form that allows the user to select between
Internal and External projects”

In the process of doing this, the BA is turning the simple feature request
idea into a more consistent, well-explained specification or requirement which
the developer can pick up. But why is this a useful step in our simple
methodology? From the perspective of our Internal Model, we can say that
the BA is responsible for:

• Trying to surface Hidden Risks
• Trying to evaluate Attendant Risks and make them clear to everyone

on the project.

In surfacing these risks, there is another outcome: while Feature X might
be flawed as originally presented, the BA can “evolve” it into a specification,
and tie it down sufficiently to reduce the risks. The BA does all this by simply
thinking about it, talking to people and writing stuff down.

10



Figure 2.4: BA Specification: exposing Hidden Risks as soon as possible

This process of evolving the feature request into a requirement is the BA’s
job. From our Risk-First perspective, it is taking an idea and making it Meet
Reality. Not the full reality of production (yet), but something more limited.

Code And Unit Test

The next stage for our feature, Feature X is that it gets coded and some tests
get written. Let’s look at how our Goal In Mind meets a new reality: this
time it’s the reality of a pre-existing codebase, which has it’s own internal
logic.

As the developer begins coding the feature in the software, they will start
with an Internal Model of the software, and how the code fits into it. But, in
the process of implementing it, they are likely to learn about the codebase,
and their Internal Model will develop.

At this point, let’s stop and discuss the visual grammar of the Risk-First
Diagrams we’ve been looking at. A Risk-First diagram shows what you
expect to happen when you Take Action. The action itself is represented by
the shaded, sign-post-shaped box in the middle. On the left, we have the
current state of the world, on the right is the anticipated state after taking the
action.

The round-cornered rectangles represent our Internal Model, and these con-
tain our view of Risk, whether the risks we face right now, or the Attendant
Risks expected after taking the action. In Figure 2.5, taking the action of

11



Figure 2.5: Coding Process: exposing more hidden risks as you code

“coding and unit testing” is expected to mitigate the risk of “Duplicating
Functionality”.

Beneath the internal models, we are also showing real-world tangible arti-
facts. That is, the physical changewewould expect to see as a result of taking
action. In Figure 2.5, the action will result in “New Code” being added to
the project, needed for the next steps of the development process.

Integration

Integration is where we run all the tests on the project, and compile all the
code in a clean environment, collecting together the work from the whole
development team.

So, this stage is about meeting a new reality: the clean build.

At this stage, we might discover the Hidden Risk that we’d break Feature Y

User Acceptance Test

Next, User Acceptance Testing (UAT) is where our new featuremeets another
reality: actual users. I think you can see how the process works by now. We’re
just flushing out yet more Hidden Risks.

• Taking Action is the only way to create change in the world.
• It’s also the only way we can learn about the world, adding to our

Internal Model.

12



Figure 2.6: Integration testing exposes Hidden Risks before you get to produc-
tion

Figure 2.7: UAT - putting tame users in front of your software is better than
real ones, where the risk is higher

13



• In this case, we discover a Hidden Risk: the user’s difficulty in finding
the feature. (The cloud obscuring the risk shows that it is hidden).

• In return, we can expect the process of performing the UAT to delay our
release (this is an attendant schedule risk).

2.3 Observations

First, the people setting up the development process didn’t know about these
exact risks, but they knew the shape that the risks take. The process builds
“nets” for the different kinds of Hidden Risks without knowing exactly what
they are.

Second, are these really risks, or are they problems we just didn’t know about?
I am using the terms interchangeably, to a certain extent. Even when you
know you have a problem, it’s still a risk to your deadline until it’s solved. So,
when does a risk become a problem? Is a problem still just a schedule-risk,
or cost-risk? We’ll come back to this question presently.

Third, the real take-away from this is that all these risks exist because we
don’t know 100% how reality is. We don’t (and can’t) have a perfect view of
the universe and how it’ll develop. Reality is reality, the risks just exist in our
head.

Fourth, hopefully you can see from the above that really all this work is risk
management, and all work is testing ideas against reality.

In the next chapter, we’re going to look at the concept of Meeting Reality in
a bit more depth.

14



CHAPTER 3

Meeting Reality

In this chapter, we will look at how exposing your Internal Model to reality
is in itself a good risk management technique.

3.1 Revisiting the Model

In A Simple Scenario, we looked at a basic model for how Reality and our
Internal Model interacted with each other: we take action based on out
Internal Model, hoping to change Realitywith some positive outcome.

And, in Development Process we looked at how we can meet with reality
in different forms: Analysis, Testing, Integration and so on, and saw how the
model could work in each stage of a project.

It should be no surprise to see that there is a recursive nature about this: the
actions we take each day have consequences, they expose new hidden risks
which inform our InternalModel and at the same time change reality in some
way. As a result, we then have to take new actions to deal with these new
risks.

So, let’s see how this kind of recursion looks on our model.

3.2 Navigating the “Risk Landscape”

Figure 3.1 shows just one possible action, in reality, you’ll have choices. We
often have multiple ways of achieving a Goal In Mind.

What’s the best way?

I would argue that the best way is the one which mitigates the most existing
risk while accruing the least attendant risk to get it done.

15



Figure 3.1: Taking actions changes reality, but changes your model of the risks
too

Figure 3.2: Navigating The Risk Landscape

Ideally, when you take an action, you are trading off a big risk for a smaller
one. Take Unit Testing for example. Clearly, writing Unit Tests adds to the
amount of developmentwork, so on its own, it adds Schedule Risk. However,
if you write just enough of the right Unit Tests, you should be short-cutting
the time spent finding issues in the User Acceptance Testing (UAT) stage, so
you’re hopefully trading off a larger Schedule Risk from UAT and adding
a smaller Schedule Risk to Development. There are other benefits of Unit
Testing too: once written, a suite of unit tests is almost cost-free to run
repeatedly, whereas repeating a UAT is costly as it involves people’s time.

You can thinkofTakingAction asmovingyourproject on a “RiskLandscape”:
ideally, when you take an action, you move from some place with worse risk
to somewhere more favourable.

Sometimes, you can end up somewhere worse: the actions you take to man-
age a risk will leave you with worse Attendant Risks afterwards. Almost
certainly, this will have been a Hidden Risk when you embarked on the
action, otherwise you’d not have chosen it.

16



Figure 3.3: Hidden Risks of Automation

An Example: Automation

For example, automating processes is very tempting: it should save time, and
reduce the amount of boring, repetitive work on a project. But sometimes, it
turns into an industry in itself, and consumes more effort than it’s worth.

Another Example: MongoDB

On a recent project in a bank, we had a requirement to store amodest amount
of data and we needed to be able to retrieve it fast. The developer chose to
use MongoDB1 for this. At the time, others pointed out that other teams in
the bank had had lots of difficulty deploying MongoDB internally, due to
licensing issues and other factors internal to the bank.

Other options were available, but the developer chose MongoDB because of
their existing familiarity with it: therefore, they felt that the Hidden Risks
of MongoDB were lower than the other options, and disregarded the others’
opinions.

This turned out to be a mistake: The internal bureacracy eventually proved
too great, andMongoDBhad to be abandoned aftermuch investment of time.

This is not a criticism of MongoDB: it’s simply a demonstration that some-
times, the cure isworse than the disease. Successful projects are always trying
to reduce Attendant Risks.

3.3 Payoff

We can’t know in advance howwell any action we take will work out. There-
fore, Taking Action is a lot like placing a bet.

1https://www.mongodb.com

17

https://www.mongodb.com


Payoff then is our judgement about whether we expect an action to be worth-
while: are the risks we escape worth the attendant risks we will encounter?
We should be able to weigh these separate risks in our hands and figure out
whether the Payoff makes a given Action worthwhile.

The fruits of this gambling are revealed when we meet reality, and we can
see whether our bets were worthwhile.

3.4 The Cost Of Meeting Reality

Meeting reality in full is costly. For example, going to production can look
like this:

• Releasing software
• Training users
• Getting users to use your system
• Gathering feedback

All of these steps take a lot of effort and time. But you don’t have to meet the
whole of reality in one go. But we can meet it in a limited way which is less
expensive.

In all, to de-risk, you should try and meet reality:

• Sooner: so you have time to mitigate the hidden risks it uncovers.
• More Frequently: so the hidden risks don’t hit you all at once.
• In Smaller Chunks: so you’re not over-burdened by hidden risks all in

one go.
• With Feedback: if you don’t collect feedback from the experience of

meeting reality, hidden risks stay hidden.

In Development Process, we performed a UAT in order to Meet Reality more
cheaply and sooner. The cost of this is that we delayed the release to do it,
adding risk to the schedule.

3.5 Practice 1: YAGNI

As a flavour of what’s to come, let’s look at YAGNI, an acronym for You
Aren’t Gonna Need It:

18



Figure 3.4: Testing flushes out Hidden Risk, but increases Schedule Risk

YAGNI originally is an acronym that stands for “You Aren’t
GonnaNeed It”. It is a mantra from Extreme Programming that’s
often used generally in agile software teams. It’s a statement that
some capability we presume our software needs in the future
should not be built now because “you aren’t gonna need it”.

—YAGNI,Martin Fowler2

The idea makes sense: if you take on extra work that you don’t need, of course
you’ll be accreting Attendant Risks.

But, there is always the opposite opinion: You Are Gonna Need It3. As
a simple example, we often add log statements in our code as we write it
(so we can trace what happened when things go wrong), though following
YAGNI strictly says we shouldn’t.

Which is right?

Now, we can say: do the work if there is a worthwhile Payoff.

• Logging statements are good, because otherwise, you’re increasing the
risk that in production, no one will be able to understand how the
software went wrong.

• However, adding them takes time, which might introduce Schedule
Risk.

So, it’s a trade-off: continue adding logging statements so long as you feel
that overall, the activity pays off reducing overall risk.

2https://www.martinfowler.com/bliki/Yagni.html
3http://wiki.c2.com/?YouAreGonnaNeedIt

19

https://www.martinfowler.com/bliki/Yagni.html
http://wiki.c2.com/?YouAreGonnaNeedIt


3.6 Practice 2: Do The Simplest Thing That Could Possibly
Work

Another mantra from Kent Beck (originator of the Extreme Programming4
methodology), is “Do The Simplest Thing That Could PossiblyWork”, which
is closely related to YAGNI and is an excellent razor for avoiding over-
engineering. At the same time, by adding “Could Possibly”, Kent is en-
couraging us to go beyond straightforward iteration, and use our brains to
pick apart the simple solutions, avoiding them if we can logically determine
when they would fail.

Our risk-centric view of this strategy would be:

• Every action you take on a project has its own Attendant Risks.
• The bigger or more complex the action, the more Attendant Risk it’ll

have.
• The reason you’re taking action at all is because you’re trying to reduce

risk elsewhere on the project
• Therefore, the biggest Payoff is likely to be the one with the least Atten-

dant Risk.
• So, usually this is going to be the simplest thing.

So, “Do The Simplest Thing That Could Possibly Work” is really a helpful
guideline for Navigating the Risk Landscape, but this analysis shows clearly
where it’s left wanting:

• Don’t do the simplest thing if there are other things with a better Payoff
available.

3.7 Summary

So, herewe’ve looked atMeetingReality, which basically boils down to taking
actions to manage risk and seeing how it turns out:

• Each Action you take is a step on the Risk Landscape
• EachAction exposes newHidden Risks, changing your InternalModel.
• Ideally, each action should reduce the overall Attendant Risk on the

project (that is, puts it in a better place on the Risk Landscape

Could it be that everything you do on a software project is risk management?
This is an idea explored in the next chapter.

4https://en.wikipedia.org/wiki/Extreme_programming

20

https://en.wikipedia.org/wiki/Extreme_programming


CHAPTER 4

Just Risk

In this chapter, I am going to propose the idea that everything you do on a
software project is Risk Management.

In the Development Process chapter, we observed that all the activities in
a simple methodology had a part to play in exposing different risks. They
worked tomanage risk prior to them creating bigger problems in production.

Here, we’ll look at one of the tools in the Project Manager’s tool-box, the
RAID Log1, and observe how risk-centric it is.

4.1 RAID Log

Many project managers will be familiar with the RAID Log. It’s simply four
columns on a spreadsheet: Risks, Actions, Issues and Decisions.

Let’s try and put the following Risk into the RAID Log:

“Debbie needs to visit the client to get them to choose the logo
to use on the product, otherwise we can’t size the screen areas
exactly.”

• So, is this an action? Certainly. There’s definitely something for Debbie
to do here.

• Is it an issue? Yes, because it’s holding up the screen-areas sizing thing.
• Is it a decision? Well, clearly, it’s a decision for someone.
• Is it a risk? Probably. Debbie might go to the client and they still don’t

make a decision. What then?
1http://pmtips.net/blog-new/raid-logs-introduction

21

http://pmtips.net/blog-new/raid-logs-introduction


4.2 Let’s Go Again

This is a completely made-up example, deliberately chosen to be hard to
categorise. Normally, items are more one thing than another. But often,
you’ll have to make a choice between two categories, if not all four.

This hints at the fact that at some level it’s all about risk:

4.3 Every Action Attempts to Mitigate Risk

The reason you are taking an action is to mitigate a risk. For example:

• If you’re coding up new features in the software, this is mitigating
Feature Risk (which we’ll explore in more detail later).

• If you’re getting a business sign-off for something, this is mitigating
the risk of everyone not agreeing on a course of action (a Coordination
Risk).

• If you’re writing a specification, then that’s mitigating the type of “In-
correct Implementation Risk” we saw in the last chapter.

4.4 Every Action Has Attendant Risk

• How do you know if the action will get completed?
• Will it overrun, or be on time?
• Will it lead to yet more actions?
• What Hidden Risk will it uncover?

Consider coding a feature (as we did in the earlier Development Process chap-
ter). We sawhere how thewhole process of codingwas an exercise in learning
what we didn’t know about the world, uncovering problems and improving
our Internal Model. That is, flushing out the Attendant Risk of the Goal In
Mind.

And, as we saw in the Introduction, even somethingmundane like the Dinner
Party had risks.

4.5 An Issue is Just A Type of Risk

• Because issues need to be fixed. . .
• And fixing an issue is an action. . .
• Which, as we just saw also carries risk.

22



Figure 4.1: Risk-First Diagram Language

One retort to thismight be to say: “an issue is a problem I have now,whereas a
risk is a problem thatmight occur.” I am going to try and break that mind-set
in the coming pages, but I’ll just start with this:

• Do you know exactly how much damage this will do?
• Can you be sure that the issue might not somehow go away?

Issues then, just seem more “definite” and “now” than risks, right? This
classification is arbitrary: they’re all just part of the same spectrum, they all
have inherent uncertainty, so there should be no need to agonise over which
column to put them in.

4.6 Goals Are Risks Too

In the previous chapters, we introduced something of a “diagram language”
of risk. Let’s review it:

Goals live inside our Internal Model, just like Risks. It turns out, that func-
tionally, Goals and Risks are equivalent. For example, The Goal of “Imple-
menting Feature X” is equivalent to mitigating “Risk of Feature X not being
present”.

Let’s try and back up that assertion with a few more examples:

Goal Restated As A Risk

Build a Wall Mitigate the risk of something getting in / out

23



Goal Restated As A Risk

Land a man on the
moon

Mitigate the risk of looking technically inferior
during the cold war

Move House Mitigate the risks/problems of where you
currently live

There is a certain “interplay” between the concepts of risks, actions and
goals. After all, on the Risk Landscape they correspond to a starting point,
a movement, and a destination. From a redundancy perspective, any one of
these can be determined by knowing the other two.

Psychologically, humans are very goal-driven: they like to know where
they’re going, and are good at organising around a goal. However, by focus-
ing on goals (“solutionizing”) it’s easy to ignore alternatives. By focusing on
“Risk-First”, we don’t ignore the reasons we’re doing something.

4.7 Every Decision is About Payoff

Sometimes, there will be multiple moves available on the Risk Landscape
and you have to choose one.

• There’s the risk you’ll decide wrongly.
• And,making a decision takes time, which could add risk to your sched-

ule.
• And what’s the risk if the decision doesn’t get made?

Let’s take a hypothetical example: you’re on a project and you’re faced with
the decision - release now or do more testing?

Obviously, in the ideal world, we want to get to the place on the Risk Land-
scape where we have a tested, bug-free system in production. But we’re not
there yet, and we have funding pressure to get the software into the hands
of some paying customers. The table below shows an example:

Risk Managed Action Attendant Risk Payoff

Funding Risk Go Live Reputational Risk,
Operational Risk

MEDIUM

Implementation
Risk

User
Acceptance
Test

Worse Funding Risk,
Operational Risk

LOW

24



Figure 4.2: UAT or Go Live: where will you end up?

This is (a simplification of) the dilemma of lots of software projects - test
further, to reduce the risk of users discovering bugs (Implementation Risk)
which would cause us reputational damage, or get the release done and reduce
our Funding Risk by getting paying clients sooner.

In the above table, it appears to be better to do the “Go Live” action, as there
is a greater Payoff. The problem is, actions are not commutative, i.e. the order
you do them in counts.

Figure 4.2 shows our decision as moves on the Risk Landscape. Whether you
“Go Live” first, or “UAT” first makes a difference to where you will end up.
Is there a further action you can take to get you from the “Dead End” to the
“Goal”? Perhaps.

Failure

So, when we talk about a project “failing”, what do we mean?

Usually, we mean we’ve failed to achieve a goal, and since goals are risks, it is
simply the scenario where we are overwhelmed by Attendant Risks: there is
no action to take that has a good-enough Payoff to get us out of our hole.

25



4.8 What To Do?

It makes it much easier to tackle the RAID log if there’s only one list. But you
still have to choose a strategy: do you tackle themost important risk on the list,
or themost urgent, or take the action with the biggest Payoff and deal with it?

In thenext chapter, EvaluatingRiskwe’ll lookat someapproaches to choosing
what to do.

26



CHAPTER 5

Cadence

Let’s go back to the model again, introduced in Meeting Reality.

As you can see, it’s an idealized Feedback Loop.

How fast should we go round this loop? The longer you leave your goal in
mind, the longer it’ll be before you find out how it really stacks up against
reality.

Testing your goals in mind against reality early and safely is how you’ll
manage risk effectively, and to do this, you need to set up Feedback Loops.
e.g.

• Bug Reports and Feature Requests tell you how the users are getting
on with the software.

• Monitoring Tools and Logs allow you to find out how your software
is doing in reality.

Figure 5.1: Meeting Reality: reality is changed and so is your internal model.

27



• Dog-Fooding i.e using the software you write yourself might be faster
than talking to users.

• Continuous Delivery1 is about putting software into production as
soon as it’s written.

• Integration Testing is a faster way of meeting some reality than contin-
ually deploying code and re-testing it manually.

• Unit Testing is a faster feedback loop than Integration Testing.
• Compilationwarns you about logical inconsistencies in your code.

.. and so on.

Time / Reality Trade-Off

This list is arranged so that at the top, we have the most visceral, most real
feedback loop, but at the same time, the slowest.

At the bottom, a good IDE can inform you about errors in your Internal
Model in real time, by way of highlighting compilation errors . So, this is the
fastest loop, but it’s the most limited reality.

Imagine for a second that you had a special time-travelling machine. With
it, you could make a change to your software, and get back a report from
the future listing out all the issues people had faced using it over its lifetime,
instantly.

That’d be neat, eh? If you did have this, would there be any point at all in a
compiler? Probably not, right?

The whole reasonwe have tools like compilers is because they give us a short-
cut way to get some limited experience of reality faster than would otherwise
be possible. Because cadence is really important: the faster we test our ideas,
the more quickly we’ll find out if they’re correct or not.

Development Cycle Time

Developers often ignore the fast feedback loops at the bottom of the list above
because the ones nearer the top will do.

In the worst cases this means changing two lines of code, running the build
script, deploying and then manually testing out a feature. And then repeat-
ing. Doing this over and over is a terrible waste of time because the feedback
loop is so long and you get none of the benefit of a permanent suite of tests
to run again in the future.

1https://en.wikipedia.org/wiki/Continuous_delivery

28

https://en.wikipedia.org/wiki/Continuous_delivery


Figure 5.2: The Testing Pyramid

The Testing Pyramid2 hints at this truth:

• Unit Tests have a fast feedback loop, so have lots of them.
• Integration Tests have a slightly slower feedback loop, so have few of

them. Use them when you can’t write unit tests (at the application
boundaries).

• Manual Tests have a very slow feedback loop, so have even fewer of them.
Use them as a last resort.

Production

You could take this chapter to mean that Continuous Delivery (CD) is always
and everywhere a good idea. That’s not a bad take-away, but it’s clearlymore
nuanced than that.

Yes, CD will give you faster feedback loops, but even getting things into
production is not the whole story: the feedback loop isn’t complete until
people have used the code, and reported back to the development team.

The right answer is to use multiple feedback loops, as shown in Figure 5.3.

In the next chapter De-Risking we’re going to introduce a few more useful
terms for thinking about risk.

2http://www.agilenutshell.com/episodes/41-testing-pyramid

29

http://www.agilenutshell.com/episodes/41-testing-pyramid


Figure 5.3: Different actions have different feedback loops

30



CHAPTER 6

One Size Fits No-One

Why are Software Methodologies1 all different?

Previously, we made the case that any action you take on a software project
is to do with managing risk, and the last chapter, A Conversation was an
example of this happening.

Therefore, it stands to reason that software methodologies are all about
handling risk too. Since they are prescribing a particular day-to-day process,
or set of actions to take, they are also prescribing a particular approach to
managing the risks on software projects.

6.1 Methodologies Surface Hidden Risks. . .

Back in the Development Process chapter we introduced a toy software
methodology that a development team might follow when building soft-
ware. It included steps like analysis, coding and testing. We looked at how the
purpose of each of these actions was to manage risk in the software delivery
process. For example, it doesn’t matter if a developer doesn’t know that
he’s going to break “Feature Y”, because the Integration Testing part of the
methodology will expose this hidden risk in the testing stage, rather than in
let it surface in production (where it becomes more expensive).

6.2 . . . But Replace Judgement

But, following a methodology means that you are trusting something other
than your own judgement tomake decisions onwhat actions to take: perhaps

1https://en.wikipedia.org/wiki/Software_development_process

31

https://en.wikipedia.org/wiki/Software_development_process


Figure 6.1: Waterfall Actions

the methodology recommends some activity which wastes time, money or
introduces some new risk?

Following a software methodology is therefore an act of trust:

• Why should we place trust in any one methodology, given there are so
many alternatives?

• Should there not be more agreement between them, and if not, why
not?

• How can a methodology possibly take into account the risks on my
project?

In this chapter, we’re going to have a brief look at some different software
methodologies, and try to explain why they are different. Let’s start with
Waterfall.

6.3 Waterfall

“Thewaterfall developmentmodel originated in themanufac-
turing and construction industries; where the highly structured
physical environments meant that design changes became pro-
hibitively expensive much sooner in the development process.
When first adopted for software development, there were no rec-
ognized alternatives for knowledge-based creative work.”

—Waterfall Model,Wikipedia2

Waterfall is a family ofmethodologies advocating a linear, stepwise approach
to the processes involved in delivering a software system. The basic idea
behind Waterfall-style methodologies is that the software process is broken
into distinct stages, as shown in Figure 6.1. These usually include:

• Requirements Capture
• Specification
2https://en.wikipedia.org/wiki/Waterfall_model

32

https://en.wikipedia.org/wiki/Waterfall_model


Figure 6.2: Waterfall, Specifications and Requirements Capture

• Implementation
• Verification
• Delivery and Operations
• Sign Offs at each stage

BecauseWaterfallmethodologies are borrowed from the construction industry,
they manage the risks that you would care about in a construction project,
specifically, minimising the risk of rework, and the risk of costs spiralling
during the physical phase of the project. For example, pouring concrete is
significantly easier than digging it out again after it sets.

Construction projects are often done by tenderwhichmeans that the supplier
will bid for the job of completing the project, and deliver it to a fixed price.
This is a risk-management strategy for the client: they are transferring the
risk of construction difficulties to the supplier, and avoiding the Agency Risk
that the supplier will “pad” the project and take longer to implement it than
necessary, charging themmore in the process. In order for this to work, both
sides need to have a fairly close understanding of what will be delivered, and
this is why a specification is created.

The Wrong Risks?

In construction this makes a lot of sense. But software projects are not the same
as building projects. There are two key criticisms of the Waterfall approach
when applied to software:

“1. Clients may not know exactly what their requirements are
before they see working software and so change their require-
ments, leading to redesign, redevelopment, and re-testing, and
increased costs.”

33



Figure 6.3: Waterfall, Applied to a Software Project

“2. Designers may not be aware of future difficulties when
designing a new software product or feature.”

—Waterfall Model,Wikipedia3

So, the sameactionsWaterfall prescribes tomitigate reworkandcost-overruns
in the building industry do not address (and perhaps exacerbate) the two is-
sues raised above when applied to software.

Asyou can see in Figure 6.3, someof the risks on the left are the same as the ones
on the right: the actions taken to manage them made no difference (or made
things worse). The inability to manage these risks led to the identification of
a “Software Crisis”, in the 1970’s:

“Software crisis is a term used in the early days of computing
science for the difficulty of writing useful and efficient computer
programs in the required time. . . The software crisis was due to
the rapid increases in computer power and the complexity of the
problems that could not be tackled.”

—Software Crisis,Wikipedia4

6.4 Agile

The Software Crisis showed that, a lot of the time, up-front requirements-
capture, specification andfixed-price bids did little tomanage cost and sched-
ule risks on software projects. So it’s not surprising that by the 1990’s, various

3https://en.wikipedia.org/wiki/Waterfall_model#Supporting_arguments
4https://en.wikipedia.org/wiki/Software_crisis

34

https://en.wikipedia.org/wiki/Waterfall_model#Supporting_arguments
https://en.wikipedia.org/wiki/Software_crisis


Figure 6.4: Risks, and the practices that manage them in Extreme Programming

different groups of software engineers were advocating “Agile” techniques
which did away with those actions.

In Extreme Programming Explained5, Kent Beck breaks down his method-
ology, ‘Extreme Programming’, listing the risks he wants to address and the
actions with which he proposes to address them. Figure 6.4 summarises
the main risks and actions he talks about. These are different risks to those
addressed by Waterfall, so unsurprisingly, they lead to different actions.

6.5 Different Methodologies For Different Risks

Here are some high-level differences we see in some other popular method-
ologies:

• Lean Software Development6. While Waterfall borrows from risk
management techniques in the construction industry, Lean Software
Development applies the principles from Lean Manufacturing7, which
wasdeveloped at Toyota in the last century. Lean takes the view that the
biggest risk in manufacturing is from waste, where waste is inventory,

5http://amzn.eu/d/1vSqAWa
6https://en.wikipedia.org/wiki/Lean_software_development
7https://en.wikipedia.org/wiki/Lean_manufacturing

35

http://amzn.eu/d/1vSqAWa
https://en.wikipedia.org/wiki/Lean_software_development
https://en.wikipedia.org/wiki/Lean_manufacturing


over-production, work-in-progress, time spent waiting or defects in
production. Applying this approach to software means minimising
work-in-progress, frequent releases and continuous improvement.

• ProjectManagementBodyOfKnowledge (PMBoK)(https://en.wikipedia.org/wiki/Project_Management_Body_of_Knowledge).
This is a formalisation of traditional project management practice. It
prescribes best practices formanaging scope, schedule, resources, com-
munications, dependencies, stakeholders etc. on a project. Although
“risk” is seen as a separate entity to be managed, all of the above areas
are sources of risk within a project, as we will see in [Part 2.

• Scrum8. Is a popularAgilemethodology. Arguably, it is less “extreme”
than Extreme Programming, as it promotes a limited set, more achiev-
able set of agile practices, such as frequent releases, daily meetings,
a product owner and retrospectives. This simplicity arguably makes
it simpler to learn and adapt to and probably contributes to Scrum’s
popularity over XP.

• DevOps9. Many software systems struggle at the boundary between
“in development” and “in production”. DevOps is an acknowledge-
ment of this, and is about more closely aligning the feedback loops
between the developers and the production system. It champions ac-
tivities such as continuous deployment, automated releases and auto-
mated monitoring.

While this is a limited set of examples, you should be able to observe that the
actions promoted by a methodology are contingent on the risks it considers
important.

6.6 Effectiveness

“All methodologies are based on fear. You try to set up habits
to prevent your fears from becoming reality.”

—Extreme Programming Explained, Kent Beck10

The promise of any methodology is that it will help you manage certain
Hidden Risks. But this comes at the expense of the effort you put into the
practices of the methodology.

8https://en.wikipedia.org/wiki/Scrum
9https://en.wikipedia.org/wiki/DevOps
10http://amzn.eu/d/1vSqAWa

36

https://en.wikipedia.org/wiki/Scrum
https://en.wikipedia.org/wiki/DevOps
http://amzn.eu/d/1vSqAWa


A methodology offers us a route through the Risk Landscape, based on the
risks that the designers of the methodology care about. When we use the
methodology, it means thatwe are baking into our behaviour actions to avoid
those risks.

Methodological Failure

When we take action according to a methodology, we expect the Payoff, and
if this doesn’t materialise, thenwe feel themethodology is failing us. It could
just be that it is inappropriate to the type of project we are running. Our Risk
Landscape may not be the one the designers of the methodology envisaged.
For example:

• NASAdon’t follow an agilemethodology11 when launching space craft:
there’s no two-weekly launch that they can iterate over, and the the risks
of losing a rocket or satellite are simply too great to allow for iteration
in production. The risk profile is just all wrong: you need to manage
the risk of losing hardware over the risk of requirements changing.

• Equally, regulatory projects often require big, up-front, waterfall-style
design: keeping regulators happy is often about showing that you have
a well-planned path to achieving the regulation. Often, the changes
need to be reviewed and approved by regulators and other stakehold-
ers in advance of their implementation. This can’t be done with an
approach of “iterate for a few months”.

• At the other end of the spectrum, Facebook used to have12 an approach
of “move fast and break things”. This may have been optimal when
they were trying mitigate the risk of being out-innovated by competi-
tors within the fast-evolving sphere of social networking. Used to have,
because now they have modified this to “move fast with stable infras-
tructure”13, perhaps as a reflection of the fact that their biggest risk is
no longer competition, but bad publicity.

6.7 Choosing A Methodology

There is value in adopting a methodology as a complete collection of pro-
cesses: choosing a methodology (or any process) reduces the amount of

11https://standards.nasa.gov/standard/nasa/nasa-std-87398
12https://mashable.com/2014/04/30/facebooks-new-mantra-move-fast-with-stability/?europe=true
13https://www.cnet.com/news/zuckerberg-move-fast-and-break-things-isnt-how-we-operate-anymore/

37

https://standards.nasa.gov/standard/nasa/nasa-std-87398
https://mashable.com/2014/04/30/facebooks-new-mantra-move-fast-with-stability/?europe=true
https://www.cnet.com/news/zuckerberg-move-fast-and-break-things-isnt-how-we-operate-anymore/


Figure 6.5: Inappropriate Methodologies create their own risks

Figure 6.6: Methodologies, Actions, Risks, Goals

thinking individuals have to do, and it becomes the process that is responsible
for failure, not the individual (as shown in Figure 6.5).

It’s nice to lay the blame somewhere else. But, if we genuinely care about
our projects, then it’s critical that we match the choice of methodology to
the risk profile of the project. We need to understand exactly what risks our
methodology will help us with, which it won’t, where it is appropriate, and
where it isn’t.

“Given any rule, however ‘fundamental’ or ‘necessary’ for
science, there are always circumstances when it is advisable not
only to ignore the rule, but to adopt its opposite.”

Paul Feyerabend14

An off-the-shelf methodology is unlikely to fit the risks of any project exactly.
Sometimes, we need to break down methodologies into their component
practices, and apply just the practices we need. This requires a much more
fine-grained understanding of how the individual practices work, and what
they bring.

As Figure 6.6 shows, different methodologies advocate different practices,
and different practices manage different risks. If we want to understand

14https://www.azquotes.com/author/4773-Paul_Feyerabend

38

https://www.azquotes.com/author/4773-Paul_Feyerabend


methodologies, or choose practices from one, we really need to understand
the types of risks we face on software projects. This is where we go next in
Part 2.

39


	Quick Summary
	1. There are Lots of Ways to Run Software Projects
	2. We Can Look at Projects in Terms of Risks
	3. We Can Break Down Risks on a Project Methodically
	4. We Can Analyse Tools and Techniques in Terms of how they Manage Risk
	5. Different Methodologies are for Different Risk Profiles
	6. We can Drive Development With a Risk-First Perspective

	Introduction
	A Simple Scenario
	Goal In Mind
	Attendant Risk
	Hidden Risks
	Meeting Reality
	On To Software

	Development Process
	A Toy Process
	Applying the Process
	Observations

	Meeting Reality
	Revisiting the Model
	Navigating the ``Risk Landscape''
	Payoff
	The Cost Of Meeting Reality
	Practice 1: YAGNI
	Practice 2: Do The Simplest Thing That Could Possibly Work
	Summary

	Just Risk
	RAID Log
	Let's Go Again
	Every Action Attempts to Mitigate Risk
	Every Action Has Attendant Risk
	An Issue is Just A Type of Risk
	Goals Are Risks Too
	Every Decision is About Payoff
	What To Do?

	Cadence
	One Size Fits No-One
	Methodologies Surface Hidden Risks…
	… But Replace Judgement
	Waterfall
	Agile
	Different Methodologies For Different Risks
	Effectiveness
	Choosing A Methodology



